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kinetics using recombinant HAB1, PYR1, or
PYR1P88S. These experiments show that (+)-ABA
acts as a potent and saturable inhibitor of phos-
phatase activity in the presence of PYR1 [median
inhibitory concentration (IC50) = 125 nM], but not
PYR1P88S (IC50 = 50 mM) (Fig. 4D and fig. S8).
Similarly, ABA displays saturable inhibition of
HAB1 PP2C activity in the presence of recombi-
nant PYL4 (fig. S8). Thus, PYR/PYLs regulate
PP2Cs in response to ABA, which defines an un-
precedented mechanism for ligand-mediated regu-
lation of PP2C activity.

Collectively, we have shown that PYR1 binds
(+)-ABA, PYR/PYLs bind to and inhibit PP2Cs
in response to (+)-ABA, and PYR/PYLs control
which ligands trigger PP2C interactions.We con-
clude that the PYR/PYLs are a family of ABA
receptors. However, the precise site of ABA bind-
ing remains unclear, because the ABA-binding
site may be shared with the PP2C. Discriminat-
ing between these receptor and co-receptor mod-
els will require structural studies of cocrystallized
PYR/PYLs, PP2Cs, and ligands. Note that the
PYR/PYLs interact directly with PP2Cs, which
are core components of the ABA signaling path-
way. Because SnRK2 activity is decreased in the
PYR/PYL quadruple mutant, we propose a hypo-
thetical model (Fig. 4D) for ABA action in which
ABA and PYR/PYLs inhibit PP2Cs, which in turn
relieves repression of positive factors, such as the
SnRK2s. Consistent with this model, we observed
interaction of SnRK2.2 with PP2CA (AHG3),
AHG1, and ABI1 when we used the yeast two-
hybrid assay (fig. S4). This suggested that the low
SnRK2 activity observed in the PYR/PYL quadru-
ple mutant may be a direct consequence of PP2C-
SnRK2 interactions. Understanding of the role of
PP2Cs in ABA signaling has been complicated by
observations from abi1-1 and abi2-1 mutations.
Their dominant phenotypes suggest that they en-
code hypermorphic proteins (35), but they paradox-
ically reduce, but do not abolish, PP2C activity
(36). Our data show that these mutants do not bind
PYR1 in response to ABA. We therefore hypoth-
esize that ABA normally lowers wild-type PP2C
activity through PYR/PYL proteins, but abi PP2Cs
escape this and disrupt signaling because of their
residual activity. Consistent with this model, a sec-
ond site mutation that abolishes abi1-1’s catalytic
activity suppresses its dominant ABA-insensitive
phenotype (36).

The redundancy in the Pyr/Pyl gene family,
typical of many plant genes, has kept these genes
from emerging as factors necessary for ABA
response. We leveraged pyrabactin’s selectivity
for a subset of the PYR/PYL family to bypass the
genetic redundancy that masks ABA phenotypes
in single mutants. Thus, our results demonstrate
the power of synthetic molecules to expose phe-
notypes for otherwise redundant genes.
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Understanding the Spreading Patterns
of Mobile Phone Viruses
Pu Wang,1,2 Marta C. González,1 César A. Hidalgo,1,2,3 Albert-László Barabási1,4*

We modeled the mobility of mobile phone users in order to study the fundamental spreading
patterns that characterize a mobile virus outbreak. We find that although Bluetooth viruses can
reach all susceptible handsets with time, they spread slowly because of human mobility, offering
ample opportunities to deploy antiviral software. In contrast, viruses using multimedia messaging
services could infect all users in hours, but currently a phase transition on the underlying call
graph limits them to only a small fraction of the susceptible users. These results explain the lack of
a major mobile virus breakout so far and predict that once a mobile operating system’s market share
reaches the phase transition point, viruses will pose a serious threat to mobile communications.

Lacking a standardized operating system,
traditional cellphones have been relatively
immune to viruses. Smart phones, however,

can share programs and data with each other,
representing a fertile ground for viruswriters (1–4).
Indeed, since 2004 more than 420 smart phone
viruses have been identified (2, 3), the newer
ones having reached a state of sophistication that
took computer viruses about two decades to achieve
(2). Although smart phones currently represent less
than 5% of the mobile market, given their reported
fast annual growth rate (4) they are poised to be-
come the dominant communication device in the

near future, raising the possibility of virus break-
outs that could overshadow the disruption caused
by traditional computer viruses (5).
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The spread of mobile viruses is aided by two
dominant communication protocols. First, a
Bluetooth (BT) virus can infect all BT-activated
phones within a distance from 10 to 30 m, result-
ing in a spatially localized spreading pattern
similar to the one observed in the case of influ-
enza (3, 6, 7), severe acute respiratory syndrome
(SARS) (8, 9), and other contact-based diseases
(Fig. 1A) (10). Second, a multimedia messaging
system (MMS) virus can send a copy of itself to
all mobile phones whose numbers are found in
the infected phone’s address book, a long-range
spreading pattern previously exploited only by
computer viruses (11, 12). Thus, in order to quan-
titatively study the spreading dynamics of mobile
viruses we need to simultaneously track the lo-
cation (13), the mobility (14–17), and the com-
munication patterns (18–21) ofmobile phone users.
We achieved this by studying the anonymized
billing record of a mobile phone provider and
recording the calling patterns and the coordinates
of the closest mobile phone tower each time a
group of 6.2 million mobile subscribers used

their phone. Thus, we do not know the users’
precise locations within the tower’s reception
area, and no information is available about the
users between calls.

The methods we used to simulate the
spreading of a potential BT and MMS virus are
described in (22). Briefly, once a phone becomes
infected with an MMS virus, within 2 min it
sends a copy of itself to each mobile phone
number found in the handset’s phone book,
approximated with the list of numbers with
which the handset’s user communicated during
a month-long observational period. A BT virus
can infect only mobile phones within a distance
r =10 m. To simulate this process, we assigned to
each user an hourly location that was consistent
with its travel patterns (13) and followed the in-
fection dynamics within each mobile tower area
using the susceptible infected (SI) model (23).
That is, we consider that an infected user (I ) in-
fects a susceptible user (S), so that the number of
infected users evolves in time (t) as dI/dt = bSI/N,
where the effective infection rate is b = m<k>with

m = 1, N is the number of users in the tower area,
and the average number of contacts is <k> =rA =
NA/Atower, where A = pr2 represents the BT com-
munication area and r = N/Atower is the popula-
tion density inside a tower’s service area. Once
an infected user moves into the vicinity of a new
tower, it will serve as a source of a BT infection in
its new location.

A cell phone virus can infect only the phones
with the operating system (OS) for which it was
designed (2, 3), making the market sharem of an
OS an important free parameter in our study. The
current market share of various smart phone OSs
vary widely, from as little as 2.6% for PalmOS to
64.3% for Symbian. Given that smart phones
together represent less than 5% of all phones, the
overall market share of these OSs among all mo-
bile phones is in the range ofm = 0.0013 for Palm
OS andm = 0.032 for Symbian, numbers that are
expected to dramatically increase as smart phones
replace traditional phones. To maintain the gen-
erality of our results, we treat m as a free param-
eter, finding that the spreading of both BT and

Fig. 1. The spread-
ing mechanisms of
mobile viruses. (A) A
BT virus can infect all
phones found within
BT range from the in-
fected phone, its spread
being determined by
the owner’s mobility
patterns. An MMS virus
can infect all suscep-
tible phones whose
number is found in
the infected phone’s
phonebook, resulting in
a long-range spread-
ing pattern that is
independent of the
infected phone’s phys-
ical location. (B) A
small neighborhood
of the call graph con-
structed starting from
a randomly chosen user
and including all mo-
bile phone contacts up
to four degrees from it.
The color of the node
represents the hand-
set’s OS, which in this
example are randomly
assigned so that 75%
of the nodes represent
OS1, and the red are
the remaining handsets
with OS2 (25%). (C)
The clusters in the call
graph on which an
MMS virus affecting a
given OS can spread,
illustrating that anMMS
virus can reach at most the number of users that are part of the giant component of the appropriate handset. As the example for the OS shows, the size of the
giant component highly depends on the handset’s market share (see also Fig. 2C).

B OS1: 75% market share

OS2: 25% market share

Giant component
80%

Giant component
6%

Small connected components and single nodes 

A Bluetooth (BT) contagion Multimedia messages (MMS) contagion

Bluetooth range (~ 10 m)

MMS messages

Bluetooth messages

C

BT susceptible phone

Phone out of Bluetooth range

MMS susceptible phoneInfected phone
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Fig. 2. The spreading
patterns of BT andMMS
viruses. (A) The changes
in the ratio of infected
and susceptible hand-
sets ( I/N) with time in
the case of a BT virus
affecting handsets with
different m. (B) Same
as in panel (A) but for
MMS viruses. The satu-
ration in I/N indicates
that an MMS virus can
reach only a finite frac-
tion of all susceptible
phones. (C) The size of
the giant component
Gm in a function of m.
The blue triangles cor-
respond to the satura-
tion values measured in
Fig. 2B, whereas the
red line is the theoret-
ical prediction accord-
ing to percolation theory
(the deviations are mainly attributed to finite size effects and degree correlations
because the calculation assumedan infinite call graph). (D) The latency timeneeded
to infect q = 0.65 or q = 0.15 fraction of susceptible handsets via a BT virus,
approximated with T(q = 0.65, m) ~ m–0.63T0.05 and T(q = 0.15, m) ~ m–0.60T0.04

(continuous lines). (E) The latency time for an MMS virus for q = 0.05, 0.15, and
0.30. The continuous lines correspond to T(q,m) ~ (m–mq*)

–a(q), where the best fits

indicate a systematic q-dependence: a(0.05) = 0.20 T 0.02, a(0.15) = 0.17 T 0.01,
and a(0.30) = 0.14 T 0.01. (F) Log-log plot showing Lave and Lmax for the largest
cluster. The fits correspond to Lmax ~ (m–m*)–0.20T0.02 and Lave ~ (m –m*)–0.19T0.02.
The curves in (A), (B), and (D) are obtained from 10 independent simulations,
and (E) and (F) represent an average over 100 runs. For more statistical analysis
of the fits in (D) to (F), see the detailed discussion in (22).
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Fig. 3. Spatial patterns
in the spread of BT and
MMS viruses. (A) The vi-
rus starts from the same
user located at the tower
marked by the red ar-
rows (left). The three
panels show thepercent-
age of infected users in
the vicinity of eachmo-
bile phone tower (de-
noted by the voronoi
cell that approximates
each tower’s service area).
In the right panel, we
show the correspond-
ing time-dependent in-
fection curves, marking
the moments when the
spatial distribution was
recorded. (B) Average dis-
tance between the tower
where the infection was
originally started and
the most currently in-
fected phone as a func-
tion ofN, the number of
towers with at least one
infected user, used as a
proxy of time (three red
and blue curves corre-
spond to m = 0.1, m =
0.5, and m = 1). The
green line is obtained from a null model that assumes that the virus can only spread from one tower’s service area to its neighbor towers’ service areas. The curves
in (B) are obtained from 100 independent simulations.
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MMS viruses is highly sensitive to the market
share of the susceptible handsets (Fig. 2, A and
B). Our simulations indicate that given sufficient
time, a BT virus can reach all susceptible hand-
sets because user mobility guarantees that sooner
or later each susceptible handset will find itself in
the vicinity of an infected handset. The spreading
rate strongly depends, however, on the handset’s
market share. For example, if the handset’s mar-
ket share ism= 0.01 it takes several months for a
BT virus to reach all susceptible handsets. In con-
trast, for m = 0.30 the BT virus could infect 85%
of susceptible handsets in a few hours and 99.8%
in less than a week (Fig. 2A).

The most striking difference between BT and
MMS viruses comes in the time scales that their
spread requires. Indeed, given that it takes approx-
imately 2 min for a typical MMS virus to copy

itself into a new handset (24), an MMS epidemic
reaches saturation in a few hours, in contrast with
the few days that the BT virus requires to infect
all susceptible handsets (Fig. 2B). Thus, although
there is plenty of time to deploy an antiviral
software for a BT virus before it could reach a
large fraction of users, it is largely impossible to
achieve the same for MMS viruses, given their
explosive spread. The good news is that anMMS
virus can reach only a smallm-dependent fraction
of users with a susceptible handset, as indicated
by the saturation of the infection curves in Fig.
2B. The origin of this saturation is the fragmen-
tation of the underlying call network. Indeed, in
Fig. 1B we show a subset of the real call network
and assume for the illustration that the handsets
can have only two OSs, OS1 and OS2, with
market shares m1 = 0.75 and m2 = 0.25,

respectively. Although the underlying call net-
work itself is fully connected, the call graph of
the users that share the same handset is frag-
mented into many islands (Fig. 1C). For m1 =
0.75, we observed a giant component (the largest
connected cluster) (Fig. 1C) of size Gm = 0.80,
meaning that it contains 80%of the users with the
OS1 handset; the rest of the OS1 users are scattered
in small isolated clusters. In contrast, for the OS2
handsets the giant component is tiny (Gm = 0.06).
If anMMS virus is released from a single handset,
it can only reach the handsets in the cluster where
the original handset is located, which indicates that
an MMS virus can infect at most a Gm fraction of
all susceptible handsets, which is 80% forOS1 and
6% for OS2 in the example of Fig. 1.

We found that the handset-based fragmenta-
tion of the call graph (Fig. 1, B and C) is governed
by a percolation phase transition at the market
share mc = 0.095 (Fig. 2C) (25). That is, for m <
mc the user base is fragmented into many small
isolated islands, making a major MMS virus viral
outbreak impossible. In contrast, for handsets with
m > mc there is a giant component, allowing the
MMS virus to reach all handsets that are part of it.
The value of mc and Gm for m > mc can be cal-
culated by using the generating function formal-
ism (26), requiring as input only the network’s
degree distribution P(k). With P(k) characterizing
our user base, we found a reasonable agreement
between the analytical predictions and the direct
measurements of the saturation value of theMMS
virus spreading in the mobile phone data set (Fig.
2C); the small systematic deviation is rooted in the
fact that the generating function formalism ig-
nores the correlations in the call graph’s structure.
The value of Fig. 2C is its ability to explain why
we have not observed a substantial MMS out-
break so far: Currently, the market share of the
largest OS is less than m = 0.03, well under the
predicted percolation transition point mc = 0.095
(27, 28). For a more detailed discussion on the
factors affecting m and mc, see (22).

The differences betweenMMS andBT viruses
have a strong impact on their spreading dynamics
as well. To see this, we denote the latency time
with T(q,m), representing the average time nec-
essary for a virus affecting a handset with market
share m to reach a q fraction of all susceptible
handsets. For a BT virus, T(q,m) is finite for any
q and m combination, given that with time the
virus can reach all susceptible users (Fig. 2A).We
found, however, that the latency time is highly
sensitive to m, a dependency well approximated
by T(q,m) ~ m−0.6 [coefficient of multiple deter-
mination (R2) > 0.99] (Fig. 2D) (22), implying
that the smaller a handset’s market share the longer
a virus will take to reach a q fraction of susceptible
users. The observed divergence at m = 0 indicates
that for handsets with a small market share, the
spreading process is exceptionally slow because
an infected user takes a very long time to come in
contact with another user with a similar handset.

Once again, the behavior of MMS viruses is
qualitatively different: We found that T(q,m) di-
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Fig. 4. The spreading patterns of hybrid viruses. (A and B) The time-dependent fraction of infected users
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verges not at m = 0 but at a finitemq* value (Fig.
2E), meaning that for handsets with m < mq* the
virus is unable to reach a q fraction of users.
Indeed, an MMS virus can reach at most a Gm

fraction of eligible handsets (Fig. 2C), implying
that Gm acts as a critical point for the dynamical
spreading process and T(q > Gm, m) = ∞. To
characterize the observed singularity, the maxi-
mum amount of time it takes an MMS virus to
invade the giant component should be deter-
mined by the length of the longest minimal path
(Lmax) characterizing the susceptible giant cluster
(29, 30). As Fig. 2F shows, we found that both
Lmax and the average minimal path length (Lave)
diverge as (m – m*)–a with a = 0.2 (R2 > 0.97)
(22), a singularity that potentially drives the ob-
served divergence of T(q,m) nearmq* given by the
equation q = Gmq

*. A more detailed measurement
indicates, however, a systematic q-dependence of
a(q) in T(q,m) ~ (m – mq*)

–a(q) in the vicinity of
the critical point (Fig. 2E) (22), hinting that there
are factors beyond Lmax that contribute to the
divergence of T(q,m).

As shown in Fig. 3, we followed the spread of
anMMS and BT infection starting from the same
user, illustrating that BT and MMS viruses differ
in their spatial spreading patterns as well: A BT
virus follows a wave-like pattern, predominantly
infecting users in the vicinity of the virus’s re-
lease point, whereas an MMS virus follows a
more delocalized pattern, given that the users’
address books often contain phone numbers of
individuals who are far away. To quantify the ob-
served differences, we measured the average dis-
tance between the cell phone tower where the first
infected user is located and the location of towers
servicing the newly infected users. A null model
in which the virus always diffuses to the non-
infected towers bordering the already infected
towers, thus following a classical two-dimensional
diffusion process, was used as a reference. As Fig.
3B indicates, the typical source-infection distances
observed in the local model are substantially
smaller than the distances recorded for either BT
or MMS viruses, indicating the impact of a few
long-distance travellers that incubate outbreaks
in distant cells (13) in the BT spreading process.
The average distance is the highest for MMS
viruses, underlying the delocalized pattern char-
acterizing its spread. Figure 3B also shows that the
dependence of the average source-infection distance
(<D>) on N is mainly a function of the spreading
technology and appears to be independent of m.

BT and MMS viruses have their relative lim-
itations: Although the spread of a BT virus is rather
slow because of human mobility, an MMS virus
can reach only a small fraction of users because
of the fragmentation of the call graph. Both lim-
itations are avoided by hybrid viruses that can
simultaneously use both BT and MMS connec-
tions to spread; the first of many such viruses was
the “CommWarrior,” released in 2005 (2, 3). We
found, however, that the spreading dynamics of a
hybrid virus also displays a complex market share
dependence (Fig. 4, A and B), resulting from a

nontrivial superposition of the BT and MMS
spreading modes. For example, for m = 0.15,
when there is a giant component aiding the MMS
spreading mode (Fig. 2C), the early stage of the
spreading process is dominated by the rapid
invasion of the MMS cluster. Subsequently, the
BT mechanism allows the virus to invade the rest
of the independentMMS clusters as well. Form=
0.01, however, there is noMMS giant component;
thus, the spreading is dominated entirely by the
BT capability, resulting in a substantially slower
spreading pattern (see the different horizontal axes
in Fig. 4, A and B).

The relative role of the BT and the MMS
spreading patterns for hybrid viruses is illustrated
in Fig. 4, C and D, which shows the latency time
T(q,m) for q = 0.15 and q = 0.65. We find that for
high m, the MMS mechanism dominates the
hybrid virus’s spreading pattern. As m decreases
below mq* given by q = Gmq

* (Fig. 2E), the giant
component becomes smaller than q, so T(q,m) for
MMS diverges (green curve) and the BT mech-
anism starts dominating the spreading rate of a
hybrid virus. Therefore, for small values ofm the
latency time of the hybrid virus converges to the
latency time of a BT virus. We found, however,
that the phase transition that governs the frag-
mentation of the call graph plays a key role in the
spread of hybrid viruses as well, delimiting the
rapidMMS-dominated and slow humanmobility–
driven spreading modes.

As shown in Fig. 4, E and F, we explored the
additional infective power of a hybrid (H) virus,
defined as the ratio TMMS(q,m)/TH(q,m) relative to
its pure MMS counterpart or TBT(q,m)/TH(q,m)
relative to its pure BT counterpart. We found that
hybrid viruses are about three times faster than an
MMS virus at a constant market share form >mc.
The contribution of BT technology for a hybrid
virus dominates for m ≤ mc because MMS viruses
are unable to spread in this region [TMMS(q,m) =∞].
The additional infective power of a hybrid virus
as compared with a BT virus achieves its highest
value close tomq*, decreasing quickly form→ 0
and mildly form→ 1, once again underlying the
importance of the critical behavior near mq*.

Taken together, our results offer a comprehen-
sive picture of the potential dangers posed by
mobile viruses. We found that although a BT
virus can reach the full susceptible user base, its
spread is constrained by humanmobility, offering
ample time for developing and deploying counter-
measures. In contrast, MMS viruses can reach
most susceptible users within hours. Their spread
is limited, however, by the market share–driven
phase transition that fragments the underlying call
graph, which allows us to predict that no major
virus breakout is expected for OSs with market
shares under the critical point associated with the
user base. Therefore, the current lack of a major
mobile virus outbreak cannot be attributed to the
absence of effective mobile viruses, but is mainly
rooted in the fragmentation of the call graph.
Given, however, the rapid growth in the number
of smart phones and the increasing market share

of a fewOSs, it is not inconcievable that the phase
transition point will be reached in the near future,
raising the possibility of major viral outbreaks.
Although the greatest danger is posed by hybrid
viruses that take advantage of both BTandMMS
protocols, we found that their spread is also limited
by the phase transition: Hybrid viruses designed
for OSs with small market shares are forced into
the slow BT spreading mode, offering time to
develop proper countermeasures. We believe that
the understanding of the basic spreading patterns
presented here could help estimate the realistic
risks carried by mobile viruses and aid in the
development of proper measures so as to avoid
the costly impact of future outbreaks.
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ATP-Citrate Lyase Links Cellular
Metabolism to Histone Acetylation
Kathryn E. Wellen,* Georgia Hatzivassiliou,*† Uma M. Sachdeva, Thi V. Bui,
Justin R. Cross, Craig B. Thompson‡

Histone acetylation in single-cell eukaryotes relies on acetyl coenzyme A (acetyl-CoA) synthetase
enzymes that use acetate to produce acetyl-CoA. Metazoans, however, use glucose as their main carbon
source and have exposure only to low concentrations of extracellular acetate. We have shown that
histone acetylation in mammalian cells is dependent on adenosine triphosphate (ATP)–citrate lyase
(ACL), the enzyme that converts glucose-derived citrate into acetyl-CoA. We found that ACL is
required for increases in histone acetylation in response to growth factor stimulation and during
differentiation, and that glucose availability can affect histone acetylation in an ACL-dependent
manner. Together, these findings suggest that ACL activity is required to link growth factor–induced
increases in nutrient metabolism to the regulation of histone acetylation and gene expression.

The accessibility of DNA in eukaryotic
cells is determined by its organization in a
DNA-protein complex known as chroma-

tin. Chromatin structure is regulated in part
through dynamic modifications of the constituent
proteins, primarily histones. Histone acetylation
has critical roles in regulating global chromatin
architecture and gene transcription (1–3). Acety-
lation of histones can provide binding sites for
proteins containing bromodomains, alter chro-
matin subnuclear localization and structure, and

neutralize histone positive charge, which may
loosen interactions between histones and DNA
(2, 4–6). Histone acetylation can be dynamically
regulated by several classes of histone deacety-
lases (HDACs) and families of histone acetyl-
transferases (HATs), which act both on targeted
regions of chromatin to regulate specific gene
transcription and in amore globalmanner (1, 3, 7).

Studies of the nicotinamide adenine dinucleo-
tide (NAD+)–dependent sirtuins (class III HDACs),
which target both histone and nonhistone proteins,
have demonstrated that deacetylation is responsive
to metabolic cues (8–12). Sirtuins are dependent
on NAD+ hydrolysis for their deacetylase ac-
tivity, and their activity is sensitive to changes in
the intracellular NAD+/NADH ratio. HATs have
not been shown to be regulated by the bioener-
getic status of the cell, but production of acetyl-
CoA by the enzyme acetyl-CoA synthetase

(Acs2p), which generates acetyl-CoA from acetate,
is linked to the regulation of histone acetylation
in the yeast Saccharomyces cerevisiae (13). This
enzyme is itself regulated in a nutrient-responsive
manner, and it is activated by sirtuin-dependent
deacetylation (14). Although mammalian cells
contain a homolog to Acs2p, AceCS1, which
synthesizes acetyl-CoA from acetate and is also
regulated by sirtuins (15), most mammalian cells
do not use acetate as a major bioenergetic sub-
strate. Rather, the major carbon source in mam-
malian cells is glucose. Acetyl-CoA can be
produced from glucose by the enzyme adenosine
triphosphate (ATP)–citrate lyase (ACL), which
generates acetyl-CoA from mitochondria-derived
citrate. ACL-dependent production of acetyl-CoA
for lipogenesis is important for the proliferation of
glycolytically converted tumor cells (16).

In yeast, Acs2p localizes to both the cyto-
plasm and the nucleus, suggesting that acetyl-
CoA is produced in both compartments in this
organism (13). Using deconvolution microscopy
to image enhanced green fluorescent protein
(EGFP)–tagged ACL, we detected EGFP-ACL
in the nucleus, in addition to the cytoplasm, in
two different mammalian cell lines (Fig. 1A and
fig. S1A). Similar results were obtained with
myc-tagged ACL in murine FL5.12 hemato-
poietic cells (fig. S1B). Subcellular fractionation
of HCT116 human colon carcinoma cells con-
firmed the presence of endogenous ACL in the
nucleus as well as the cytoplasm (Fig. 1B).
AceCS1 was largely cytoplasmic in HCT116
cells, with a small but significant amount of
protein detected in the nuclear fractions (Fig. 1B).
Because both citrate and acetate are small
molecules able to diffuse freely through the
nuclear pore complex (17), these data suggest
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Fig. 1. ACL localizes to the nucleus and cytoplasm. (A) Subcellular localization
of EGFP-tagged ACL in LN229 cells imaged by deconvolution microscopy.
EGFP-ACL, visible in both nucleus and cytoplasm, is contrasted to DsRed
mitochondrial marker, which is excluded from the nucleus. DAPI (4´,6´-
diamidino-2-phenylindole) staining of nuclear DNA is restricted to the nucleus.
(B) Western blot analysis of cytoplasmic and nuclear protein extracts from
HCT116 cells. Quantitation represents mean T SD from four (ACL and AceCS1)

or eight [poly(ADP-ribose) polymerase (PARP) and tubulin] nuclear and
cytoplasmic samples. ACL and AceCS1 are both significantly (***, P <
0.0001) enriched in the nuclear fraction as compared with tubulin.
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